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1. INTRODUCTION 

The purpose of this short Perspective article is to introduce questions in COVID-19 vaccine 

development, which in our view can be tackled by QSP approach. The purpose of this article is not to 

provide actionable predictions. The plots presented in main text show example simulations conducted 

for illustration purposes only. Therefore, we do not publish the entire model with a full set of rate law 

parameters and their documentation, which would be required in a full research article. The purpose 

of this Supplementary Material is to provide additional detail introducing the main assumptions of our 

modelling approach and comparison of virtual trials with clinical data, as well as type and magnitude 

of effort required for the development of QSP platform models applicable to vaccine development. 

 

2. PREVIOUS WORK ON MECHANISTIC MODELLING OF IMMUNE RESPONSE AND 

APPLICATIONS TO VACCINES 

Mechanistic modelling of the immune system has a been long-standing topic of interest in 

mathematical biology. Seminal models of B-cell clonal selection and antibody production date back to 

1970s1. In our previous publication, we have provided a comprehensive review2 of immune system 

modelling and identified ~130 models relevant to cytotoxic T-cell response and immune-oncology. 

These models did not include antibody responses and were not directly applicable to vaccine 

modelling. The biology covered in these models is more relevant to anti-viral response and 

inflammation. In fact, a QSP model of COVID-19 disease progression, covering cytotoxic response and 

inflammation but not B-cells and antibodies, has been recently published3. This model is applicable to 

development of therapeutics, but not vaccines. B-cell activation, antibody affinity maturation and 

other key processes occurring in germinal centres have been the subject of a number of detailed 

models. Garg, Desikan and Dixit introduce the state of the art in this field and present their own model4. 

These models however do not model vaccine administration and frequently use agent based 

modelling approaches, which would be too computationally expensive for virtual trial simulations 

involving hundreds of model instances simulated in timescales covering years. The ODE models of 

antibody response to viruses have been previously published. The model of Lee et al. 2009 describing 

immune response to influenza provides a classical model and review of previous work in this field5. 

This is a model of immune response to virus in mice, which does not include vaccine dose 

administration and translation to human. 

Contrary to therapeutic drug development, where the support of dose selection by quantitative 

modelling is very well established, vaccine development still mostly follows long-standing empirical 

experience and practice. It has only recently been recognised that dose optimisation through 

approaches equivalent to PK/PD would be valuable to optimize vaccines. In their recent review article, 

Rhodes et al.6 argue for the application of immunostimulation/immunodynamic modelling to  dose 

finding for new vaccines. The earlier work from the same group presents such an IS/ID model with an 
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example application for dose selection in TB vaccines. They analyse mouse data on the number of IFN-

gamma producing CD4 T-cells, fit these data with an empirical NLME model, allometrically scale mouse 

parameters to human, and make a prediction of the number of IFN-gamma producing T-cells observed 

in ex-vivo assays of human peripheral blood. The model has two variables for general populations of 

“transitional effector” and “resting memory” T-cells, does not represent B-cells and antibody 

production, and introduces dose as a dose group, rather than as a dose amount mechanistically linked 

to other biological processes. While the authors show how alternative doses established in animal 

studies could be prioritised for first in human trial, the model has, in our view, limited power to 

extrapolate. For example, without the dynamic, quantitative model translating dynamics of antigen 

concentration following specific quantity of a vaccine, antigen presentation and activation of B-cells, 

the model is unlikely to make predictions for dose intervals and dose amounts, which were not first 

tested in animal experiments. Empirical models fitted to specific animal dataset will have limited 

power in combining data from trials on different vaccines: below we show how the change of 

magnitude in IgG production in older influenza vaccine subjects, can be used to inform the QSP model 

of SARS-CoV-2 mRNA vaccines and predict changes observed in clinical data not used for calibration. 

Also, key human population parameters such as HLA genetics, body weight, compartment volumes, 

blood and lymph flows are missing. Thus, the model of Rhodes et al would not be applicable to make 

a prediction for a specific clinical population – the model could only be used to provide descriptive 

statistics for such a population, when clinical data becomes available. 

While the distinction between PK/PD and QSP modelling is fluid and frequently debated, in general, 

the aim of the QSP approach to dose selection is to create a mechanistic model of underlying biology 

to expand the range of extrapolation with respect to the data used to inform the model. This may 

come at the expense of less precise fits of model predictions to data, often discovered after the data 

became available, than the fits obtained during calibration. However, if applied with caution and in 

the appropriate context, predictions of clinical biomarker changes before clinical trials are conducted 

may prove invaluable for drug/vaccine development programs. The benefits of top-down versus 

bottom-up mechanistic approach are subjects of long standing scientific if not philosophical debate, 

and it is not our aim to provide a resolution or even a comprehensive review here. Our article is a 

Perspective on the potential application of QSP approaches in SARS-CoV-2 vaccine dose optimisation. 

To the best of our knowledge, the QSP approach has not yet been applied to vaccine dose selection. 

The most relevant QSP model of Chen, Hickling and Vicini7, 8 (CHV model) mechanistically represents 

protein antigen administration and PK,  antigen uptake, digestion and MHC II binding, naïve, memory 

and effector CD4 T-cells, naïve, memory and plasma B-cells, antigen specific IgG synthesis antibody 

synthesis and immune complex formation. Similar to the model of Rhodes and colleagues, the CHV 

model was first parameterised by mouse data and then translated to human. However, due to the 

mechanistic detail included, the model produced antibody concentration profiles, which could be 

analysed with clinical trial criteria to predict the incidence of immunogenicity. Instead of using models 

fitted to specific doses, introduced as factors in NLME fitting, the CHV model quantitatively translates 

dose amount and dosing interval to quantitative antibody dynamics. Moreover, specific predictions 

could be made for patient populations with known HLA allele distributions as well as for individual 

genotypes. At the same time, the model does include CD4 T-cells and thus can also be informed by 

data that Rhodes and colleagues used in their study. As described in more detail below, the Certara 

Immunogenicity Consortium further expanded the biological scope of the CHV model and validated it 

by clinical case studies to create the IG Simulator tool9. However, both the CHV model and IG Simulator 

were so far applied to prediction of the impact of anti-drug antibodies (ADA) on drug PK and were not 

used for vaccine dose selection.  
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Computational approaches to COVID-19 vaccines have been recently comprehensively reviewed by  

Hwang et al.10. The review shows that the field focusses on “static” analyses of protein sequences and 

structures to optimise antigens by protein engineering. Furthermore, statistics and machine learning 

are used to identify biomarkers of patient safety and protection. Authors state that PK modelling 

approaches are currently unexplored. Authors cite the IS/ID modelling perspective mentioned above 

and state that there is a scope for application of Physiologically Based  Pharmacokinetics (PBPK) to 

investigate antigen pharmacokinetics following administration in different modalities.  

Based on literature reviewed above we conclude that application of QSP approach to SARS-CoV-2 

vaccine development has not yet been published in a peer-reviewed article. We expect that other 

research groups are also considering utility of QSP in this context and thus wish to share our 

perspective. 

 

3. VACCINE SIMULATOR DEVELOPMENT 

Since 2017, the Immunogenicity QSP Consortium has focussed on modelling formation of anti-drug 

antibodies, an unwanted immunological response to therapeutic proteins9. Since the basic biology of 

the humoral immune response is the same regardless of whether we simulate an unwanted ADA 

response to therapeutic proteins or desired immunogenicity to a vaccine antigen, we could quickly re-

purpose this model for COVID-19 vaccines. Below we present the major modelling assumptions of re-

purposed model and work involved in its development.  

The starting point in the development of the IG Simulator was the CHV model7, 8. This is an Ordinary 

Differential Equation model describing the following biological processes involved in antibody 

response to protein antigen 1) activation of antigen presenting cell 2) antigen uptake and digestion to 

peptides 3) peptide binding to MHC II receptors 4) antigen presentation 5) activation, proliferation 

and death of naïve, functional and memory CD4 T-cells 6) activation, proliferation and death of naïve, 

memory and plasma B-cells 7) IgG Anti-Drug Antibody production 8) Binding of ADAs to an antigen 

and formation of immune complex 9) Two compartment Pharmacokinetic model of therapeutic 

protein (antigen). The model introduces one specific clone of T-cells for each T-cell epitope with 

binding constants specific to compound sequence and HLA gene encoding particular MHC II receptor. 

A polyclonal antibody response was modelled by 17 clones of B-cells spanning entire range of 

biologically plausible antibody affinity. The compound specific input of the model is based on 

bioinformatics prediction of T-cell epitopes and binding constants to MHC II genes, but experimentally 

determined epitopes can be used as well. The PK model parameters are also required either from 

extrapolated pre-clinical model or clinical data for ADA negative patients. The model is used for virtual 

trial simulation with population frequency HLA alleles and PK model clearance being used as sources 

of variability. While antibody concentration and compound pharmacokinetics are major outputs of 

interest, all mechanistic model variables can be output and examined. The CHV mode is available7, 8 

with full documentation and executable Matlab code and further detail will not be re-iterated here. 

The first step of IG Simulator9 development was to replace the two-compartment PK model with 

Physiologically Based Pharmacokinetic (PBPK) model for biologics published by Li et al 201411 to 

expand model applicability in pre-clinical stage of drug development, when compound PK data may 

not yet be available and need to be extrapolated from molecular properties. The CHV model contains 

all immune system processes in one compartment. We compartmentalised immune system model 

into lymph node, peripheral blood and vascular blood compartments to better represent key immune 

system events occurring in lymph node and biomarker concentrations usually measured in peripheral 
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blood. The baseline immune cell numbers in tissues were set based on literature data. Example 

publications illustrating types of data sources include widely accepted order-of-magnitude estimates 

of absolute tissue numbers from pathology data12, flow cytometry data from excised lymph-nodes13 

and organ donor tissues14, experimentally determined frequencies of pre-existing naïve T-cells15. 

Compartment volumes were set following PBPK model11, and cell circulation and migration were 

assumed to be limited by blood and lymph flows also available in PBPK model. 

We expanded the antibody part of the model. The IgM species was included, and we also incorporated 

affinity maturation. PBPK model was used to capture the antibody distribution between physiological 

compartments and elimination from the system.  

Table S1 summarises biological scope of IG Model. 

Variables Lymph compartment Vascular blood compartment Peripheral blood compartment 

T cells 

Naïve Naïve Naïve 

Activated from naïve X X 

Memory Memory Memory 
Activated from memory X X 

Functional Functional Functional 

B cells 

Naive Naive Naive 

Activated from naive X X 

Memory Memory Memory 
Activated from memory X X 

DC cells 
Matured X X 

Immature Immature Immature 

ADA 
IgG IgG IgG 
IgM IgM IgM 

Immune 
complex 

IgG-Ag IgG-Ag IgG-Ag 
IgM-Ag IgM-Ag IgM-Ag 

Plasma cells 
X Long-lived X 
X Short-lived X 

Main modules of IG simulator 
• Minimal PBPK model 
• Bioinformatics input 
• Antigen presentation module (MHCII) 
• Cells circulation across compartments 

• Antibodies circulation across compartments 

• Antibody affinity maturation 

Table S1. Biological scope of IG Simulator. 
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The IG Simulator is used to run virtual trial and predict incidence of immunogenicity and its impact on 

PK. The virtual trials and application of IG Simulator are introduced in our previous publications2, 9. The 

IG Simulator has been calibrated and validated using 15 case studies of compounds for which clinical 

data on pharmacokinetics and immunogenicity were available. Currently it is applied to ~20 ongoing 

drug development projects. 

In the wake of the SARS-CoV-2 pandemic we re-purposed the IG Simulator to predict antibody 

responses to COVID-19 vaccines. The general strategy was to implement the model of vaccine 

administration and antigen expression, which was subsequently connected to IG Simulator already 

including all processes describing antibody production in response to protein antigen. Our initial focus 

was on Lipid Nanoparticle (LNP) mRNA vaccines. Figure S1 shows a diagram of LNP mRNA model, 

which we connected to IG Simulator.  

 

 

Figure S1. Connectivity of LNP mRNA administration model. Dose – the dose of LNP mRNA [ug 
mRNA]. mRNA_t, mRNA_p, mRNA_ln – mRNA concentrations [ng mRNA / mL] in tissue, plasma and 
lymph node compartments. mRNA_ends_t, mRNA_ends_ln – mRNA concentrations [ng mRNA / mL] 
in endosomes in lymph and tissue compartments, following uptake of LNP mRNAs by cells. 
mRNA_ends1_t, mRNA_ends1_ln  – mRNA concentrations [ng mRNA / mL] in acidified endosomes. 
mRNA-cytoplasm and mRNA_cytoplasm_t denote translating mRNA concentrations [ng mRNA / mL] 
in the cytoplasm. Translation reactions produce antigen. Antigen variables are located within tissue and 
lymph node compartments of IG Simulator and updated accordingly. IG Simulator models antigen 
distribution, clearance and antigen specific immune response. While the model tracks mRNA 
concentration only, graphical symbols indicate mechanistic steps when mRNA is coated in LNPs. 

 

At the time of Vaccine Simulator model construction only pre-clinical data relevant to LNP mRNA 

administration, bio-distribution and expression were available. Moreover, there were no data 

expression of SARS-CoV-2 spike protein. However, the LNP mRNA technology is constructed as a 

“platform”, suitable for administration of any protein. Therefore, we could capitalise on pre-clinical 

data for other protein antigens and create general model, with protein specific parameters, which can 

be deduced from sequence. The mouse bio-distribution data published by Moderna16 for their mRNA 
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vaccines against H10N8 and H7N9 influenza viruses indicate that following intramuscular injection 

large amount of mRNA distributes from injection site to liver and lymph nodes.  Majority of mRNA is 

distributed to tissues within 2 hours after administration, distribution to lymph compartment is 

delayed with Tmax between 2 and 8h. Based on this information we decided to create a model where 

LNP mRNA is distributed to tissue, lymph and plasma compartments. Expression of mRNA takes place 

in tissues and lymph nodes. The intracellular of the model was based on the detailed, quantitative 

experimental study of LNPs expressing human EPO in adipocyte and hepatocyte cell cultures17. 

Authors published separate time profiles for LNP uptake and protein expression demonstrating 10 

hours delay before first protein molecules were produced. Thus minimal mechanistic model explaining 

these data includes separate uptake and expression processes. Moreover, to reproduce observed 

delay we had to introduce a “delay chain” step. This step can be mechanistically interpreted as 

endosome acidification and mRNA release process. The translation rate is dependent on transcript 

and product lengths following general gene expression models accepted in Systems Biology field18. 

The model was parameterised to simultaneously reproduce time profiles of cell culture mRNA and 

protein concentrations17 and mouse mRNA AUC, Cmax, Tmax and half life data for lymph, plasma and 

tissues16. In cell culture simulations only uptake and intracellular processes were included. Protein 

lengths of hEPO and influenza vaccine antigens were used in cell culture and mouse data fitting 

respectively.  

The LNP mRNA administration model was allometrically scaled to human and connected to IG 

Simulator. Mouse BW of 28g was assumed. In virtual trial simulation scaling was conducted for each 

virtual patient separately, using individual body weight. Following well accepted allometric scaling 

formulas, distribution rates were scaled with body weight using exponent -0.25. Compartment 

volumes were scaled with exponent 1. The rates of intracellular processes of endosome uptake, 

acidification and protein translation and mRNA degradation were not scaled. Connection to IG 

Simulator was created by adding protein production by translation to ODEs describing antigen 

concentrations in lymph and tissues. Molecular weights of transcripts and antigens were used for unit 

conversion to picomole. 

The QSP model described above was used for virtual trial simulations of mRNA vaccines mRNA-1273 

and BNT162b2 presented in main text. The virtual population file containing model input (parameters 

and initial states) for each virtual patient was created following procedures established for IG 

Simulator9. The NetMHCIIPan software was used to predict T-cell epitopes and MHC II receptor 

binding constants in SARS-CoV-2 S protein19.  The HLA allele frequencies for North American 

population were obtained from Allele Frequency net database20 and used to randomly generate 

individual patients genotypes and assign MHC II affinities accordingly. Individual physiological 

parameters (body weight, blood and lymph flows, compartment volumes were created using biologics 

model11 implemented in Simcyp simulator (https://www.certara.com/software/simcyp-pbpk/). 

 

4. CALIBRATION AND VALIDATION OF VACCINE SIMULATOR. 

At the time of the Vaccine Simulator development, results of Phase II/III trial of mRNA-127321 

provided the only available clinical data for COVID-19 mRNA vaccine. We used antibody titers 

reported in this trial to refine parameters of the model. We adjusted model parameters within 

biologically plausible ranges to reproduce relative change of antibody level between primary 

and booster dose. We used booster to primary dose ratio to make our comparison 

independent of a particular way of converting titers to concentrations. Furthermore, we 

https://www.certara.com/software/simcyp-pbpk/
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created version of the model representing older adult population (>65 years of age). At the 

time this work was conducted there were no data from COVID-19 mRNA vaccines for these 

age group. Therefore, we used clinical data from other vaccines to adjust antibody response 

in older age groups. The clinical work of Herati et al22. provides data on a change of IgG 

antibody level between younger and older adults in response to influenza vaccine. Data show 

33% decrease in antibody amount in older population. Without any further evidence we have 

calibrated Vaccine Simulator to reproduce this effect. We varied parameters describing 

carrying capacity for a functional T-cell to stimulate the activation and proliferation of target 

naïve/memory B cells. We acknowledge that this is empirical, rather than mechanistic 

approach. Having examined literature on aging immune system, we did not find mechanism, 

which could be implemented within current model framework. 

When Phase II/III trial of BNT162b1 and BNT162b2 vaccines was published23, it constituted an 

ideal data set for validation, since none of the scientists refining the model has seen the data.  

We chose BNT162b1 vaccine for validation, as it is more difficult case study. The BNT162b1 

uses SARS-CoV-2 S-protein Receptor Binding Domain (RBD) as an antigen, which is different 

from mRNA-1273 and BNT162b2, which use full S-protein. Other differences between both 

BNT162b and mRNA-1273 trials were shorter interval between primary and booster dose (21 

days, rather than 28 days) and different dose amounts (25, 100, 250 microgram in mRNA-

1273 and 10, 20, 30 microgram in BNT162b). Crucially, BNT162b1/2 trial contains data for 

older adults, thus allowing validation of our calibration based on influenza vaccine data.  

We conducted virtual clinical trials of BNT162b1 vaccine using Vaccine Simulator calibrated 

as described above. The T-cell epitope prediction was conducted for RBD sequence alone. 

HLA allele frequencies for North American population were used. Simulations were run for 

both for younger and older subjects using two variants of the model described above. 

Distributions of PBPK model parameters were also made age group specific, using appropriate 

distributions from Simcyp simulator. We run 18 virtual trials corresponding to 18 

measurements of antibody titers reported in clinical data: 3 timepoints (21, 28, 35 days), 3 

doses (10, 20, 30 microgram) and 2 age groups. For each trial we simulated 250 subjects with 

21 day interval between primary and booster dose. The number of subjects was sufficiently 

large to assure stability of the results and sufficiently small to be practical given computational 

cost of the model. For each clinical timepoint we calculated Geometric Mean Concentration 

of IgG [ng/mL]. We acknowledge that simulated GMC values in [ng/mL] and clinical 

observations expressed in arbitrary units based on titer [U/mL] cannot be directly compared. 

However, we can assume that concentration and titer values are correlated. Similarly to 

clinical situation our model produces polyclonal response with wide range of affinities. The 

GMC differences between timepoints, doses and age groups are thus determined by antibody 

amount. 
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Figure S2. Comparison of predicted and observed data for BNT162b1 vaccine. Scatter plots show 
observed and predicted values for 18 measurements. A) linear scale B) Base 10 logarithm values of 
GMC C) Example of uncorrelated data: predicted and observed columns were randomly permuted.  

 

Figure S2 shows that there is statistically significant correlation between clinical data and 

predicted values for BNT162b1 vaccine. Correlation coefficients for both GMC and log10 of 

GMC are 0.74 and 0.83 respectively with P-values of 4.1e-4 and 1.29e-5. In both cases 95% 

confidence interval does not include 0. As a reference, we created randomly permuted 

version of the dataset, by shuffling order of observed and predicted values in columns of the 

data file. The correlation coefficient is 0.09, with p-value of 0.71 and 95% confidence interval 

of correlation coefficient including 0. We conclude that predicted and observed anti-RBD IgG 

geometric mean concentrations are significantly correlated across different doses, time 

points and age groups. Therefore, Vaccine Simulator is applicable to prediction of changes in 

antibody levels at different timepoints following administration of different doses of COVID-

19 mRNA vaccines to different age groups of clinical subjects. 

Figure 2 presents validation of vaccine simulator for prediction of a specific biomarker – 

serum anti-RBD IgG concentration. As shown on Figure 2 of main manuscript, the QSP model 

can be used to generate hypotheses about time profiles of other biomarkers. We believe that 

these hypotheses are useful in directing experimental work in discovery of new biomarkers 

reflecting vaccine action and possibly new correlates of protection. The measurement of 

these biomarkers in Phase I/II stage of vaccine development would provide data for validation 

of Vaccine Simulator for prediction of these biomarkers. Validated QSP model would then 

become valuable tool for interpretation of biomarker results in larger clinical trials and large 

scale vaccination programs. 

Finally, it is important to stress, that application of Vaccine Simulator to any other platform 

than mRNA vaccines would require implementation of platform specific administration 
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module, followed be validation of entire model. While the mechanistic model of immune 

response to protein antigen is general, rather than mRNA vaccine specific, one cannot exclude 

possibility that other modalities may trigger processes, which were either not included or 

which calibration was not sufficiently tested. For example, adenovirus vector vaccines (e.g. 

AZD1222) may trigger immune response to the vector. Therefore, implementation of new 

administration module should be followed by similar validation to what is presented above 

for mRNA vaccines. This could be done with Phase I/II data for specific doses and validated 

model could then be used for prediction of optimal dosing regime in larger efficacy trials and 

long-term vaccination programs. 

 

5. DIRECT COMPARISON OF MODEL OUTPUT AND ANTIBODY TITER. 

Antibody response is usually reported as a titer rather than concentration. This is because 

bioassay signal depends both on antibody amount and affinity. While the standard curve can 

be created with spiked in amounts of antibody and used to convert assay signal to absolute 

concentration, the choice of reference antibody will always involve assumptions. For example, 

if polyclonal rabbit antibodies are used, the criticism may be that they may have different 

affinity range than patient’s antibodies. If specific human monoclonal antibody is used it will 

not represent full affinity range in human polyclonal response. Because of these complexities 

antibody amounts in clinical trials are usually reported as titers, where titer is defined as the 

reciprocal of the highest dilution of the sample that yields a positive result (e.g., dilution of 

1/100=titer of 100), i.e., a result above a predetermined “cut point” value of assay signal24. 

Depending on further normalisation, titers may also be reported as arbitrary units. 

While antibody titers can be directly used as dependent variables in statistical or empirical 

models fitted to data, the lack of precise measurement of absolute antibody concentrations 

poses challenge for mechanistic quantitative modelling. In our model the dose in microgram 

RNA is translated into antibody concentration in ng/mL through simulation of a model 

involving mechanistic steps, described by absolute cell numbers or molecular concentrations 

in compartment volumes. This allows us to integrate a wide range of biology literature, where 

mechanistic steps are characterised in isolation (cell proliferation rates, antibody synthesis 

rates). However, the challenge specific to antibody response modelling is that we need to 

compare absolute concentrations with clinical outcomes reported in arbitrary unit or titers. 

One way of addressing this challenge is to focus on relative changes between timepoints, for 

example the ratio of antibody amount after primary and booster dose. The ratios of reported 

titers and simulated concentrations can be directly compared. Figure S2 above is an example 

of model and clinical outcome comparison which assumes linear relationship between 

polyclonal response simulated by our model and observed titer, within physiological 

parameter range, but does not require specific mapping between titers and concentrations. 

Significant correlation between predictions and clinical outcomes indicates that we can 

predict relative change of antibody level between different dose amounts, dosing intervals, 

timepoints and age groups. Credible prediction of relative change in response to dose amount 

and interval of a particular vaccine in specific patients population, available before clinical 
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trial is conducted, is in itself highly valuable for dose selection. However, given that scientific 

effort triggered by the pandemic resulted in experimental data of unprecedented scope and 

quantitative detail, we believe that we can map mechanistic model output and clinical data 

more directly. 

We identified three recent publications reporting convalescent serum levels of antibodies 

specific to RBD domain of anti-SARS-CoV-2 S-protein in absolute concentration units25, 26, 27. 

Chen and colleagues25 used human monoclonal antibody CR302228 as a positive control. This 

antibody, originally discovered in Sars-Cov research, binds SARS-CoV-2 RBD28. The Geometric 

Mean Plasma concentration determined in 92 subjects who recovered from SARS-CoV-2 

infection was 4422.11 ng/mL. This corresponds very closely to convalescent serum 

measurement in 34 subjects reported by Ibarrondo and colleagues27. While these authors 

published only the plots and did not include supplementary data, the concentration reported 

by Chen et al. (3.65 on log10 scale) is very close to the median of data shown on Figure 1. 

Ibarrondo et al. also publish their standard curve obtained using CR3022 antibody as a 

standard. Thus, two independent groups, analysing independent samples of convalescent 

subjects and using CR3022 as a standard obtained consistent estimates of convalescent serum 

concentration. Crucially, very close estimate of convalescent serum concentration was 

obtained by the group using different positive control. Hartley and colleagues26 created 

standard curve by serial dilutions of Ritixumab, biding its specific antigen in separate wells on 

the same plate. The Geometric Mean Concentration of anti-RBD IgG in 25 convalescent 

subjects was 4676.62 ng/mL. Given that antibody concentrations change over many orders of 

magnitude and are generally reported on logscale, this is remarkably close to the value of 

4422.11 ng/mL obtained by Chen and collegues, who used CR3022 as positive control. Instead 

of averaging these two values, we chose to use value reported by Chen et al. as it was 

obtained for larger number of subjects. We conclude that anti-RBD IgG convalescent serum 

concentration of 4422.11 ng/mL is supported by three independent studies using two 

different positive controls for assay calibration. 

The clinical trial of mRNA-127321 included measurement of anti-RBD convalescent serum titer 

in 38 subjects with the same assay which was used for assessment of anti-RBD antibody 

response to vaccine (mRNA-1273 is full S-protein vaccine, but anti-RBD antibodies were 

assayed as well). The Geometric Mean Titer reported for 38 convalescent subjects was 37,857 

(95% CI 19,528–73,391). The data reported by Widge et al.29 show a subset of patients from 

the same trial. To directly compare clinical and simulated data on one plot, we divided each 

data set by relevant convalescent serum level. Simulated anti-RBD concentrations were 

divided by 4422.11 ng/mL and clinical titers were divided by 37,857 at each time point. Figure 

1A in main manuscript shows the ratios of IgG to convalescent serum for clinical and 

simulated data on one plot. 

Similar argument is applicable to clinical trial of BNT162b1 and BNT162b2 vaccines23. The 

Geometric Mean Concentration for convalescent serum of 38 subjects was 631 U/mL. The 

BNT162b1 and b2 vaccines use RBD and full spike antigens and it was not clear whether 

authors reported convalescent serum of anti-RBD or anti-S antibodies. However, in their 

previous paper, the same group reported convalescent serum GMC of anti-RBD IgG as 601 
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U/mL for a sample 38 subjects30. These values are close and likely represent the same 

measurement, but we chose to use the value of 601 U/mL as the reference. Therefore, to 

directly compare simulated and clinical data for BNT162b2 and calibrate the model for this 

vaccine, we divided simulated output by 4422.11 ng/mL and clinical data plots by 601 U/mL. 

Calibrated model was used for simulations shown on Figures 1C, D and following chapter 

discusses definition of responders. 

 

6. ANTIBODY PROTECTION THRESHOLD. 

Plasma antibody titer is relatively easy to measure biomarker reported in every vaccine 

development program. However, relationship between antibody level following vaccination 

and protection from infection and disease is complex, due to multiple different immune 

response pathways, which may potentially be recruited by the vaccine. In particular, vaccines 

invoke cytotoxic T-cell responses, where cells infected by pathogen are killed, thus limiting 

spread of infection within the body. Moreover, antibody titers in plasma may poorly reflect 

amount of antibodies at the site of infection. Thus, plasma antibody level may at best be a 

correlate of protection and the correlation needs to be established in clinical data collected 

for particular disease. Regardless of these complexities, the term “protective threshold” is 

used in vaccinology literature (e.g. Figure 4 and the discussion in Pollard and Bijker 202031) 

and in the case that plasma antibodies are established as correlate of protection, clinical 

subjects may be stratified as “responders” based on antibody titer. 

Clinical trial of mRNA-1273 vaccine21 shows high correlation between antibody anti-RBD IgG 

titers and virus neutralisation titers in vitro (r = 0.853, 95% CI (0.811, 0.886)). Even stronger 

correlation was reported for BNT162b1 vaccine (r = 0.9452, p<0.0001)30. Therefore, all 

conclusions presented in main text, such as dosing interval corresponding to maximal 

response would remain unchanged if in-vitro neutralisation assay was a biomarker of interest. 

Still, virus neutralisation assay may be a correlate of protection but is not direct measure of 

vaccine efficacy. 

With a growing number of Phase III trials completed for COVID-19 vaccines there is a 

mounting evidence that plasma antibody titer is indeed a correlate of protection. In recent 

medRxiv pre-print (https://doi.org/10.1101/2021.03.17.20200246), Earle et al. present a plot 

of vaccine efficacy vs Sars-Cov-2 spike IgG ELISA for 7 vaccines. While the manuscript is not 

yet peer-reviewed, authors convincingly demonstrate that the linear model can be fitted to 

these data with rank correlation coefficient of 0.93 and 94.2% of variance explained (Figure 

1B). Therefore, dose recommendations (e.g. optimal interval) based on simulated or observed 

increase in plasma anti-RBD antibody level are very likely to translate to increase in efficacy. 

In our analysis we focussed on identifying approximate antibody threshold which would be 

useful to stratify patients. As observed by United Kingdom Joint Committee on Vaccination 

and Immunisation (UK JCVI)32 as a part of the justification for adjusted dosing interval, the 

cumulative incidence curves for vaccine and placebo arms of mRNA vaccines separate at 

between day 10 and 14. Assuming linear relationship between antibody level and protection, 

the antibody level observed between day 10 and 14 corresponds to the smallest 

https://doi.org/10.1101/2021.03.17.20200246
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concentration required for protection. The day 14 antibody geometric mean titer for 100 ug 

mRNA-1273 dose is 34,073. This is within 95% CI of convalescent serum titer of 37,857. 

Therefore, we assume that convalescent serum level is useful threshold related to protection. 

This is further substantiated by the observation that Sars-Cov-2 re-infections are rare; 

immune response in convalescent patients is protective. Unfortunately, there are no day 14 

antibody data for BNT162b2 vaccine. However, given similarity of both antibody responses 

and efficacy curves between mRNA-1273 and BNT1622b2, we expect that it is useful to use 

convalescent plasma concentration as a protection threshold for both vaccines. 

We plotted convalescent plasma level on Figure 1A and 1B in main manuscript as a guide-for-

an-eye level threshold relevant for protection. Our conclusions regarding maximum antibody 

concentration as a function of dose interval and the shapes of antibody time profiles do not 

depend on the threshold and are not affected by assumptions discussed above. Given that i) 

antibody concentration is emerging as a correlate of protection ii) a timepoint where efficacy 

is first observed coincides with the timepoint where antibodies reach convalescent serum 

level, we believe that is useful to consider convalescent serum concentration as the threshold 

below which protection may be of concern. This is reflected in our discussion of response 

durability and protection after first dose. Furthermore, on Figure 1C and 1D we use 

convalescent serum level to classify patients and plot concentration of responders. This is to 

demonstrate that our simulations can be used to simulate biomarker relevant to protection 

for different doses of a vaccine applied to different age groups. Users could of course use 

different thresholds in this type of analysis to examine consequences of different assumptions 

in design of long term vaccination programs. Finally, we also note that prediction of the time 

profile of antibody response to different doses in different patient populations is going to 

become more useful as the data on relationship between antibodies and protection 

accumulate. Based on Recent pre-prints of Earle et al. 

(https://doi.org/10.1101/2021.03.17.20200246) and Padmanabhan, Desikan and Dixit 

(https://doi.org/10.1101/2021.03.16.21253742) we expect that it will soon be possible to 

translate simulated antibody levels to more detailed estimates of efficacy. 
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